Pharmaceutical analytical chemistry-1

1- Basic Information:

Code	: PA-211
Level	: First level (second year pharmacy)
Department	: Pharmaceutical Analytical Chemistry
Unit	: 2 + 1=3 (hrs)
Lecture	: two (hrs) /week
Tutorial	: (within practical classes)
Practical	: one (hr) /week
Total	: 3 units (hrs) / week

2- Aims of Course

-Explanation of the principles of basic and pharmaceutical analytical chemistry such as fundamentals of acid-base and precipitimetric **titrations** as well as the gravimetric analysis, and explaining the application of these principles in the pharmaceutical analysis of drug substances.

-Teaching students how to select the suitable method for analysis of drug substances.

3- Intended Learning Outcomes of the Course (ILOs)

After successful finishing the course, students should be able to

a- Knowledge and Understanding:

- al- mention the principles of basic and pharmaceutical analytical chemistry such as fundamentals of acid-base and precipitimetric titrations as well as the gravimetric analysis and calculation of the basic statistical parameters, and explain the application of these principles in the pharmaceutical analysis of drug substances.
- a2- mention the suitable method for analysis of drug substances depending on basic understanding of physic-chemical properties of the chemical compounds.

b- Intellectual Skills:

bl4-assess and interpret the possible interactions or interferences of some chemical compounds with the selected method of analysis of certain compounds depending on the studied principles.

c- Professional and practical Skills:

c7- handle properly the chemical compounds in the laboratory and be aware of the rules of good laboratory and storage practice to detect easily and minimize the errors of an applied analytical method.

d- General and Transferable Skills:

- d1- Apply the information technology skills, such as word processing and internet communication and online searches.
- d9- work effectively with the others as a team work in performing the report on the results of an analytical method.
- d12- manage the time in an analytical work effectively.

4- Course Contents

Торіс	No. of	Lecture	Tutorial /
	hours		Practical
1. Fundamentals of acid-base titrations.	11	7	4
2. Application of acid-base titrations in the	10	6	4
pharmaceutical analysis of drug substances.			
3. Fundamentals of precipitimetric titrations	3	2	1
4. Application of the bases of precipitimetric	6	4	2
titrations in the pharmaceutical analysis of drug			
substances.			
5. Fundamentals of gravimetric analysis	6	5	1
6. Application of gravimetric analysis in the	4	3	1
pharmaceutical analysis of drug substances			

5- Teaching and Learning Methods

5.1- Data show

- 5.2- Blackboard
- 5.3- Laboratory experiments

- 5.5- Tutorial discussions
- 5.4- Group discussion problems

6- Teaching and learning methods for disables

Office hours and specialist workers help them in the laboratory

7- student Assessment

a- Student Assessment methods

- 7.1-Written mid-term exam to assess al-a2 and b14
- 7.2- Practical exam to assess c7, d9, d12
- 7.3- Final exam to assess al-a2, b14, c7
- 7.4- Oral exam to assess a1-a2, b14 and c7
- 7.5- E-learning to assess d1

No.	Assessment	week
1.	Mid-term exam	9
2.	Practical exam	14
3.	Final exam	15
4.	Oral exam	15

b- Student Assessment Schedule

c- Weighting of Assessments

No.	Exam.	Mark	%
1.	Mid-Term Exam	15	10
2.	Final-Term Exam	70	46.7
3.	Final Oral Exam	20	13.3
4.	Final Practical Exam	30	20
5.	Gravimetric Sheet	5	3.33
6.	Semester Work (E-learning)	4	2.67
7.	Other types of assessment	6	4
	Total	150	100%

8- List of References

a- Course notes ;

Lecture notes and practical notes prepared by staff members of Pharm. Anal. Chem. Dept.

b- Essential Books (Text Books)

1- Vogels Textbook of Quantitative Inorganic Analysis, 6th Edition Longman Scientific and Technical, USA (1998).

2- Christian G. D., "Analytical Chemistry ", John-Wiley and Sons, Inc New York (1994).
3- D. A. Skoog and d. M. west, "Fundamentals of Analytical Chemistry", 7th ed CBS Publishing Asia Itd (2000).

c-Recommended Books

1- Amer M. M., Pharmaceutical Analytical Chemistry Quantitative Analysis, Cairo.

2- Fifield & Keal D., Principles & Practice of Analytical Chemistry.

d- Periodicals, Web Sites, etc

- 1- The Analyst
- 2- J. Pharm. & Biomed. Anal.
- 3- J. Assoc. off Anal. Chem.

Week	Торіс		K&U	IS	PPS	GTS
	Theoretical	Theoretical Practical				
1	Fundamentals of acid-base titration Theory	Introduction to how to use the tools of analytical work	a1	b14	C7	d1, d9, d12
2	Factors affecting ionization of acid and base and buffer solutions	Preparation and standardization of HCI	a1-a2	b14	C7	d1, d9, d12
3	Acid-base titration curves	Buffer solutions	a1-a2	b14	C7	d1, d9, d12
4	Detection of the end point in acid-base Titrations	Titration curves: 1-Strong acid & Strong base 2-Weak acid & Strong base 3-Strong acid & Weak base	a1-a2	b14	C7	d1, d9, d12
5	Application of acid-base titrations	Carbonate&bicarbonate mixture Ammonium chloride (Formol titration)	a1-a2	b14	C7	d1, d9, d12
6	Application of acid-base titrations	Biphasic titration (demonstration) Determination of Bacl 2 Boric acid & borax mixtur	a1-a2	b14	C7	d1, d9, d12
7	Application of acid-base titrationsn;;	Potassium perulphate Mixture of CaO & CaCo3	a1-a2	b14	C7	d1, d9, d12
8	Non aqueous titrations	Determination of Anitine & aniline salts (demonstr)	a1-a2	b14	C7	d1, d9, d12
9	Solubility product and factors affecting the solubility of the ppt	Determination of solubitity product of Pbl2.	a1-a2	b14	C7	d1, d9, d12

Matrix of the Intended Learning Outcomes (ILOs) of the Course

Week	Торіс		K&U	IS	PPS	GTS
	Theoretical	Practical		10	110	
10	Applications of precipitimetric titrations	Mixture of chloride and iodide by Faj's method	a1-a2			
11	Applications of precipitimetric Titrations	Mixture of Chloride and iodide dy Fajan s method ZnSO₄ by ferrocyanide	a1-a2	b14	C7	d1, d9, d12
12	Gravimetric analysis, requirements & methor of separations & their applications	Gravimetricdetermination of Ni ⁺²	a1-a2	b14	C7	d1, d9, d12
13		Practical Examination	a1		C7	d1, d9, d12

Pharmaceutical analytical chemistry-2

1-Basic Info	ormation
Code	: PA-222
Level	: First level (second year pharmacy)
Department	: Pharmaceutical Analytical Chemistry
Unit	: 2 + 1=3 (hrs)
Lecture	: two (hrs) /week
Tutorial	: (within practical classes)
Practical	: one (hr) /week
Total	: 3 units (hrs) / week

2- Aims of Course

- 1. Explanation of the principles of basic and pharmaceutical analytical chemistry such as fundamentals of oxidation-reduction and complexometric **titrations**, and explaining the application of these principles in the pharmaceutical analysis of drug substances.
- 2. Teaching students how to select the suitable method for analysis of drug substances.
- 3. Explanation of the fundamentals of **statistical** evaluation of the results and teaching students how to interpret the results.

3- Intended Learning Outcomes of the Course (ILOs)

After successful finishing the course, students should be able to

a- Knowledge and Understanding:

- al- mention the principles of basic and pharmaceutical analytical chemistry such as fundamentals of oxidation-reduction and complexometric **titrations**, as well as calculation of the basic **statistical** parameters and explain the application of these principles in the pharmaceutical analysis of drug substances.
- a2- mention the suitable method for analysis of drug substances depending on basic understanding of physic-chemical properties of the chemical compounds.

b- Intellectual Skills:

bl4-Assess and interpret the possible interactions or interferences of some compounds with the selected method of analysis of certain compounds depending on the studied principles.

c- Professional and practical Skills:

c7- handle properly the chemical compounds in the laboratory and be aware of the rules of good laboratory and storage practice to minimize the errors of an applied analytical method.

d- General and Transferable Skills:

- d1- Apply the information technology skills, such as word processing and internet communication and online searches.
- d9- work effectively with the others as a team work in performing the report on the results of an analytical method.
- d12- manage the time in an analytical work effectively.

4- Course Contents

Торіс	No. of	Lecture	Tutorial /
	hours		Practical
Fundamentals of oxidation-reduction titrations.	11	8	3
Application of oxidation-reduction titrations in the	10	6	4
pharmaceutical analysis of drug substances.			
Fundamentals of complexometric titrations	5	4	1
Application of the bases of complexometric titrations	6	4	2
in the pharmaceutical analysis of drug substances.			
Statistical validation of an analytical method	6	4	2

5- Teaching and Learning Methods

- 5.1- Data show
- 52- Blackboard
- 5.3- Laboratory experiments
- 5.4- Group discussion problems
- 5.5- Tutorial discussions

6- Teaching and learning methods for disables

Office hours and specialist workers help them in the laboratory

7- student Assessment

a- Student Assessment methods

7.1-Written mid-term exam to assess al-a2 and b14 7.2- Practical exam to assess c7, d9, d12

- 7.3- Final exam to assess al-a2, b14, c7
- 7.4- Oral exam to assess a1-a2, b14 and c7
- 7.5- Review article to assess d1

b- Student Assessment Schedule

No.	Assessment	week
1.	Mid-term exam	10
2.	Practical exam	11
3.	Final exam	15
4.	Oral exam	15

c- Weighting of Assessments

No.	Exam.	Mark	%
1.	Mid-Term Exam	15	10
2.	Final-Term Exam	70	46.7
3.	Final Oral Exam	20	13.3
4.	Final Practical Exam	30	20
5.	Statistical Sheet	5	3.33
6.	Semester Work (Review article)	4	2.67
6-	Other types of assessment	6	4
	Total	150	100%

8- List of References

a- Course notes ;

Lecture notes and practical notes prepared by staff members of the department

b- Essential Books (Text Books)

Vogels Textbook of Quantitative Inorganic Analysis, 6th Edition Longman Scientific and Technical, USA (1998).

Christian G. D., "Analytical Chemistry ", John-Wiley & Sons, Inc New York (1994).

D. A. Skoog and d. M. west, "Fundamentals of Analytical Chemistry", 7th ed CBS Publishing Asia Itd (2000).

c-Recommended Books

Amer M. M., Pharmaceutical Analytical Chemistry Quantitative Analysis, Cairo. Fifield & Keal D., Principles & Practice of Analytical Chemistry.

d- Periodicals, Web Sites, etc

1- The Analyst 2-. Pharm. & Biomed. Anal. 3- J. Assoc. off Anal. Chem.

Matrix	of the	Intended]	Learning	Outcomes	(ILOs)	of the Course
					· · ·	

Week	Торіс		K & I I	21	PPS	GTS
moon	Theoretical	Practical	Rao		110	010
1	Fundamentals of oxidation-reduction	Introduction to how to use the tools of	a1	b14	C7	d1, d9, d12
	theory	analytical work				
2	Factors affecting oxidation potential	Preparation & Standardization of KMn04	a1-a2	b14	C7	d1, d9, d12
		-Det,ermination of hydrogen peroxide				
		-Determination of pot. persulphate				
3	Redox titration curve	Determination of Fe salts using: KMn04	a1-a2	b14	C7	d1, d9, d12
		- K2Cr207 (external& internal indicator)				
		-Ceric sulphate (demonstration)				
4	Detection of the end point in redox	- Determination of ferrocyanide	a1-a2	b14	C7	d1, d9, d12
	titrations	- Determination of Fe & Fe in mixture				
5	Properties of some oxidizing agents	- Determination of Copper sulphate	a2	b14	C7	d1, d9, d12
		- Determination of Phenol				
6	Oxidation reduction in	Determination of glucose & sucrose	a2	b14	C7	d1, d9, d12
	pharmaceutical analysis	mixture, Determination of ascorbic acid				
		(Vīt .C),				
7	Applications of redox titrations	- Andrew, s method	a2	b14	C7	d1, d9, d12
		-Determination of glycerol				
8	Co-ordination complexes	Determination of Ca & Mg mixture	a1-a2	b14	C7	d1, d9, d12
	Analytical importance of complexes	Determination of Zinc (xylenol orange				
		&ErioT)				

Week	Торіс		K&II	21	DDS	213
	Theoretical	Practical	Kau	0	FFS	015
9	Stability of metal-EDTA complexes	Determination of Aluminum (back	a1-a2	b14	C7	d1, d9, d12
	EDTA titration curves	titration)				
10	Metal ion indicators (metallochromic	Non-EDTA titrations	a1-a2	b14	C7	d1, d9, d12
	indicators)	Determination of bismuth				
	Types of EDTA titrations	Determination of mercuric nitrate				
		Determination of mercuric chloride				
11	EDTA selectivity Chelation and	Practical Exam	a1-a2	b14	C7	d1, d9, d12
	biological action					
	Titrations involving unidentate					
	ligands					
12	Accuracy, Precision and Q-test	Errors, accuracy and precision	a1		C7	d1, d9, d12
	Linear regression and correlation	Correlation and regression analysis				
13	Sampling	(Statistical treatment)	a1		C7	d1, d9, d12
	Validation of analytical procedure					
	Types of analytical procedure					